高速拉丝中影响光纤强度的因素:光纤低强度断裂是什么原因?
发布日期:2022-04-22
光纤都是由石英玻璃制造的。石英玻璃光纤在制作的过程中玻璃基体不可避免地存在微小的不均匀性、高温熔融骤冷拉丝使表面形成应力分布不均匀、及环境尘埃、机械损伤等致使光纤表面产生一些微裂纹[1]。这些微裂纹在高速拉丝中,承受较大的拉丝张力,会产生进一步的扩张,导致光纤强度降低。随着目前拉丝速度的不断提高,如何在保证光纤强度成为人们比较关心的问题。本文从工艺的角度探讨了预制棒、炉子温度、涂覆工艺和拉丝环境对光纤强度的影响。
一 、预制棒对光纤强度的影响
光纤在生产过程中出现低强度断裂主要是由光纤存在的缺陷引起的。这些缺陷大致可分为内部缺陷和表面缺陷,内部缺陷主要预制棒中夹杂的气泡和杂质。表面缺陷主要形式是微裂纹和微尘沾污,它与预制棒表面损伤,拉丝炉和环境的洁净度,涂覆质量等因素有密切关系。为进一步说明这些因素对光纤强度的影响,以下分别进行讨论和分析:
1.1 内部缺陷的影响
预制棒的生产过程中,不可避免的存在气泡和杂质。对于预制棒内部一定直径的气泡,在拉丝过程中可能发生破裂,或者缩小成极细小的气线而对光纤强度产生严重的影响。而对于内部杂质造成的缺陷,拉丝过程中不仅无法使其愈合和缩小,相反这类杂质大都是天然石英原料中夹杂的高熔点金属氧化物,由于其膨胀系数与玻璃体存在较大的差异,因此在高温融化时,杂质和玻璃体界面产生裂纹。裂纹在拉丝过程中会不断地增长,裂纹尺寸远远大于杂质本身的尺寸,因此这些杂质对光纤强度的危害要比气泡之类的影响大得多。预制棒中存在的气泡和杂质对于光纤拉丝来说,是不可避免,如果预制棒质量不好,就无法通过拉丝工艺提高强度。因此,预制棒质量时影响光纤强度的主要因素。
1.2 表面缺陷的影响
表面缺陷主要为微裂纹和表面沾污。预制棒表面的微裂纹,在拉制过程中不可避免的会转变成光纤表面较小的微裂纹。当光纤受到外部应力作大于这些小的微裂纹扩展临界应力时,小的微裂纹逐渐增大,最终导致光纤断裂[2]。而表面沾污会降低裸光纤表面与内涂涂料的结合紧密度。由于内涂涂料和裸光纤之间有空隙,当受到一定外力时,涂层处首先发生断裂,进而引起裸光纤断裂。
目前对于表面缺陷主要有两种处理方法:一为火焰抛光,二为HF酸处理。火焰抛光可以有效地治愈预制棒表面的微裂纹,HF酸可以洗去附着在预制棒表面的杂质。因此在实际生产中,对预制棒进行HF酸洗和火焰抛光进行二次处理,从而提高光纤强度。我们对未处理预制棒和处理后预制棒拉制光纤的强度进行了统计,结果如表所示:
从表1可以看出,经过二次处理后的预制棒,拉制的光纤的强度明显提高。需要注意, HF酸洗时一定要控制好酸洗的时间,如果酸洗时间过长,微裂纹会产生明显的扩张。并且火焰抛光时,要控制好火焰燃烧气体的纯净度和环境的洁净度,防止抛光时产生二次污染。
二、炉子温度对光纤强度的影响
高温拉丝过程中发生点缺陷将导致光纤机械强度劣化,已发现的最重要的点缺陷之一E′缺陷是Si-O链断裂产生的,Si-O链断裂和重新链合时动态变化的,E缺陷的浓度取决于Si-O链断裂和重新链合的平衡结果。E缺陷的浓度随拉丝炉加热区长度增加而增加,随拉丝速度增加而降低,加热区长导致预制棒在高温区时间加长,从而导致Si-O链断裂产生的频率更高。有研究表明,当加热炉温度从2200K增加到3000K时,刚从加热炉出来的裸光纤的缺陷浓度就会增加二个数量级。
同时由于高温下,炉中的石墨件挥发产生如下反应: 反应生成的SiC是一种硬度较高的微粒,在加热炉内若裸光纤被SiC微粒碰的,光纤表面会产生缺陷和裂纹。而当加热炉内温度越高,反应生成的SiC微粒的数量就越多,所以裸光纤表面被碰伤的机率就越高,光纤表面产生的缺陷越多,光纤强度就越低[3]。
三、涂覆和固化对强度影响
3.1涂覆的影响
光纤涂层的作用是保护光纤表面不会受到机械损伤和潮气的影响并保持其原有的强度,若涂层太薄或偏心就会失去机械保护的作用。涂层的同心度在拉丝过程中容易变化,因此在拉丝中需时刻注意。下表为根据实际拉丝统计出的涂层同心度不同对光纤强度的影响。
图1 外涂同心度不同对光纤强度的影响
根据上图所示,当涂层的同心度小于8时,每1000KM光纤的断点数在10左右,在筛选中不会对光纤强度造成太大影响影响。而当光纤同心度达为10时,断点数为15.5。因此,光纤的同心度小于8,可以有效地减少因涂层偏心而引起光纤强度的降低。
涂覆过程中,另一个影响光纤强度的因素是涂层中的气泡。气泡的产生主要是因为拉丝中,光纤在模具中位置发生偏移,使得涂料形成的半月型液面发生倾斜,角度较小侧受到压力增加,气体容易被光纤带入涂层中;或者涂料温度变化,涂覆压力波动等因素都会在涂层产生气泡[4]。涂层中的气泡,降低了涂层和涂层之间以及涂层和裸光纤之间的结合力。并且气泡的存在增加了涂层在受到拉力情况下,产生裂纹的可能性,最终导致光纤强度降低。
3.2 固化系统的影响
根据实际光纤生产方法,目前广泛使用光聚作用的技术方法。利用UV辐射使得光引发剂激发成活性体(自由基或阳离子)。该活性体与预聚物和单体中的C=C双键反应,形成增长链。该增长链进一步反应,形成更长聚合物链。若有多管能度聚合物或单体存在,就会产生交联结构,最后活性体的耦合与歧化使反应终止。
随着技术的提高,目前生产中拉丝速度已经提高的20m/s~30m/s,光纤在固化炉的停留时间仅为0.1s~0.2s。为保证涂覆后光纤的固化效果,要求固化炉能够提供足够的紫外光能,满足光引发剂激活成活性体所需要的能量。同时,在固化炉内通入一定比例的惰性气体,防止氧气对聚合物链增长的抑制,提高固化效果。
图2和图3对不同固化度光纤和由于氧气含量过高而引起光纤表面发粘发光纤的强度进行的统计。从图看出,当光纤的固化度的高于80%时,光纤的强度没有随着光纤固化度的升高而升高,而是呈随机性的分布。而图中,固化炉中氧含量过高造成的表面发粘的光纤,与正常光纤相比,每1000KM的断点数由12.1个升高到12.8个,没有出现较大的升高。
图2固化度对光纤强度的影响
图3 氧含量过高引起光纤发粘对强度的影响
四、环境等其它因素对强度影响
在预制棒的运输过程和拉丝时预制棒不够准直的情况下,都有可能引起预制棒表面擦伤。当涂覆不良时,裸光纤表面也容易被涂覆口所擦伤。但一般来说,这些机械损伤在操作细心的情况下,是可以有效地避免。
除了上述的机械损伤外,另一个影响光纤强度的重要因素是环境中的灰尘以及石墨拉丝炉中的挥发物。这些灰尘不仅能粘附在预制棒和裸光纤表面,甚至会在炉子中形成小的颗粒,撞击预制棒的融化区,产生较大的缺陷。因此在拉丝炉中除了采用高温时挥发小的高纯石墨材料外,还必须用高纯氩气强制排气,保证炉子局部保持一定得清洁度。对于拉丝环境,除了保证整个拉丝车间的洁净度外,在拉丝塔上安装空气过滤装置保证局部100级左右的净化区域[5]。
五、总结
通过对预制棒,拉丝炉子,涂覆固化和环境等其它因素对光纤强度的分析,可以看出,影响光纤强度的主要因素是预制棒的质量。通过对光棒表面的处理可以明显地提高光纤的强度,稳定的拉丝炉子温度,较好的涂覆质量以及良好的固化度可以提高光纤的强度。在拉丝的生产中保持拉丝环境的洁净,加强生产操作为规范,选用质量可靠的生产辅助材料,防止这些隐性的因素对光纤强度产生影响。
光纤制造 拉丝炉
长飞光纤拉丝炉
光纤拉丝炉石棉
射频光纤拉丝炉
玻璃光纤拉丝炉
石墨光纤拉丝炉
塑料光纤拉丝炉
杭州光纤拉丝炉
光纤拉丝炉